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Introduction
Background of project
Species distribution models (SDMs) aim to show the predicted presence of a species across the landscape (Miller 2010). SDMs
are relevant in ecology for studies of how climate change may alter the current ranges of a variety of species (Mainali et al. 2015;
Srivistava et al. 2019). For example, a study by Tang et al. (2012) predicts the future forest composition of New England under
different modeled climate change scenarios, which has implications for the future of this large region. SDMs are also notably
used to model the future spread of invasive plants (Ahmed et al. 2020), which are non-native species that are harmful to native
species due to traits such as a fast growth rate (e.g., Graebner et al. 2012).

The importance of removing invasive plants is represented in a U.S. government initiative known as Early Detection and Rapid
Response (EDRR; Reaser et al. 2020a). With EDRR, government personnel communicate that invasive species ought to be
identified as soon as possible and removed swiftly in order to avoid their deleterious effects on native species (NISIC n.d.). In
addition to the threat they pose to native plants, invasive plants are costly to remove (Larson et al. 2011), and land managers
may therefore be interested in which species may invade their land in the future, names of which are collected on documents
known as watch lists (Jarnevich et al. 2023).

MaxEnt, or maximum entropy modeling, is a type of algorithm used to produce SDMs based only upon points where the
species have been observed in the past and explanatory rasters containing values for environmental variables (Phillips et
al. 2006). This is the type of model which will be produced in R to predict the distribution of a study species. Point data is readily
available from the Global Biodiversity Information Facility (GBIF), a global database of species occurrences, and raster data is
available from Worldclim (Fick and Hijmans 2017). Specifically, raster data for bioclimatic variables (i.e., those related to
temperature and precipitation) is provisioned in the form of 19 TIFF files each for a historical period (1970-2000) and a series of
20-year periods (2021-2040, 2041-2060, 2061-2080, and 2081-2100).

Importance of project
Invasive species distribution models predict the presence/absence of an invasive species across a study area (e.g., Diao and
Wang 2014). The study species for this project is Ailanthus altissima, otherwise known as tree-of-heaven. In Massachusetts, this
species is one of only 36 plants considered to be invasive (MIPAG 2022), and it can thus be considered a species of relative
concern. A. altissima is described as especially troublesome among invasive species due to the traits of high seed production,
easy distribution of seeds via wind, potential for vegetative growth, and its use of allelopathic effects against native species
(Soler and Izquierdo 2024). According to GBIF, tree-of-heaven has not been observed (i.e., there are no presence points) across
much of Vermont and New Hampshire and essentially all of Maine (GBIF 2025). As such, one may wonder whether this harmful
species could potentially spread into northern New England (the aforementioned three states) from its already-established
populations in southern New England (MA, CT, RI), as climate changes.

Project outcomes
The outcome of this project is a script which can be used to remotely download data from examples of two of three basic
sources needed for SDM construction: GBIF (presence points) and Worldclim (explanatory rasters). Please see the separate
RMarkdown file for documentation of a discrepancy which prohibited the use of a remotely downloaded vector dataset from



ArcGIS Online to delineate the study area. Such an achievement may be possible given connection with ArcGIS Pro, but part of
the aim of this project was to create SDMs using open-source or free software.

In keeping with other SDMs created using MaxEnt, the results of the project are a set of rasters showing the predicted
probability of presence for tree-of-heaven in different time periods (Liu 2022). There are three rasters shown in the results
section: a historical SDM, showing a prediction surface using 1970-2000 data; a future raster, showing a prediction surface
using predicted climate data for 2021-2040; and another future raster created from a prediction on 2041-2060 data.

Methods
Point data download
To download point data from GBIF directly to the R session, one can first configure R
(https://docs.ropensci.org/rgbif/articles/gbif_credentials.html) to store a GBIF username and password.

#library(usethis)
#usethis::edit_r_environ()

With the above code, functions from the package rgbif  will use an existing username and password for GBIF. Downloading
data on the website itself always requires authentication, so this is a normal aspect of its provision of species occurrence data.
The goal with the rgbif  package is to attempt to download all presence points of tree-of-heaven within the chosen study
region of New England. To do this, one can use the occ_download  (occurrence download) function in the package to construct
a query by supplying various filters to the internal pred  (predicate) function. When one navigates to the GBIF website to
download data, the graphical user interface on the side of the screen adds filters to the query one at a time. This is visible in the
URL. For example, when one selects that the occurrence status should be “present,” the term &occurrence_status=present
is added to the URL. The occ_download  function works in the same way; users add predicates to the download in order to
create a sufficiently selective set of points.

A few filters are included together in the value pred_default() , which will be used for simplicity. The added filters are that the
occurrence status is present, the points have coordinates, there are no geospatial issues, and the points are not fossil or living
specimens (Waller 2020). In addition, codes are supplied to format a query which only extracts points from the study region of
New England. Since this area is not a country nor an administrative area, the two built-in options for area filters on GBIF, codes
will be used for the six New England states. On GBIF, this looks like:

gadm_gid=USA.7_1&gadm_gid=USA.46_1&gadm_gid=USA.22_1&gadm_gid=USA.40_1&gadm_gid=USA.30_1&gadm_gid=USA.20_1 .

Disclaimer: The below code chunk was used to download GBIF data on one of the final runs of the script. It successfully
downloaded a ZIP file to the data folder for the project once it had run. A subsequent test run, however, suggested a severe lag
or rate limit on the GBIF API (the status of the download remained “preparing” for upwards of one hour, when it is supposed to
move to “running” within a minute). As such, the below code has been commented out and the ZIP file, which contains a CSV
file, will be read into the script to replace the object which would have been remotely downloaded in the final run of the script
(during the knitting process).

library(rgbif)

## Warning: package 'rgbif' was built under R version 4.3.3

library(tidyverse)

## Warning: package 'lubridate' was built under R version 4.3.3

https://docs.ropensci.org/rgbif/articles/gbif_credentials.html
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## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become e
rrors

# 
# gbif_download <- occ_download(pred_default(), 
#                               pred("taxonKey", 3190653),
#                               pred_or(
#                                 pred("gadm","USA.7_1"),
#                                 pred("gadm","USA.46_1"),
#                                 pred("gadm","USA.22_1"),
#                                 pred("gadm","USA.40_1"),
#                                 pred("gadm","USA.30_1"),
#                                 pred("gadm","USA.20_1")
#                                 ),
#                               format="SIMPLE_CSV"
#                               )
# 
# occ_download_wait(gbif_download)
# 
# gbif_data <- occ_download_get(gbif_download) %>%
#   occ_download_import()

The download was successful, returning 2398 presence points for tree-of-heaven in New England. GBIF data have the potential
to change frequently via the addition of points from community science website iNaturalist, whose “research-grade”, or
community-vetted, observations make up a significant portion of the records for many species. A benefit of using rgbif  is that
an SDM may be more up-to-date than one which relies on the user manually downloading data at the start of the project.

Here, the download from a past run of the script is loaded into the project due to the aforementioned problem with the GBIF API
taking much longer than could be expected.

library(readr)
library(sf)

## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE

library(here)

## here() starts at /Users/a/Desktop/SDAR/Final2

gbif_data <- read_tsv(here("0012198-250515123054153.csv")) # read_csv did not work; https://discour
se.gbif.org/t/reading-gbif-downloads-simple-csv-with-r/2615;

## Rows: 2398 Columns: 50



## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr  (28): datasetKey, occurrenceID, kingdom, phylum, class, order, family, ...
## dbl  (13): gbifID, individualCount, decimalLatitude, decimalLongitude, coord...
## lgl   (6): infraspecificEpithet, coordinatePrecision, depth, depthAccuracy, ...
## dttm  (3): eventDate, dateIdentified, lastInterpreted
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

# https://discourse.gbif.org/t/problem-parsing-large-occurrence-downloads/2570/3

#gbif_data <- st_as_sf(csv_data, coords=c("decimalLongitude", "decimalLatitude"), crs=4326) # Not p
ursued due to concatenation of coordinates

Examining the output of the GBIF download reveals that it is a dataframe with a great many variables.

str(gbif_data)



## spc_tbl_ [2,398 × 50] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ gbifID                          : num [1:2398] 8.92e+08 5.15e+09 5.15e+09 5.15e+09 5.15e+09 
...
##  $ datasetKey                      : chr [1:2398] "50c9509d-22c7-4a22-a47d-8c48425ef4a7" "50c950
9d-22c7-4a22-a47d-8c48425ef4a7" "50c9509d-22c7-4a22-a47d-8c48425ef4a7" "50c9509d-22c7-4a22-a47d-8c4
8425ef4a7" ...
##  $ occurrenceID                    : chr [1:2398] "http://www.inaturalist.org/observations/42832
0" "https://www.inaturalist.org/observations/279310555" "https://www.inaturalist.org/observations/2
79319023" "https://www.inaturalist.org/observations/280843642" ...
##  $ kingdom                         : chr [1:2398] "Plantae" "Plantae" "Plantae" "Plantae" ...
##  $ phylum                          : chr [1:2398] "Tracheophyta" "Tracheophyta" "Tracheophyta" 
"Tracheophyta" ...
##  $ class                           : chr [1:2398] "Magnoliopsida" "Magnoliopsida" "Magnoliopsid
a" "Magnoliopsida" ...
##  $ order                           : chr [1:2398] "Sapindales" "Sapindales" "Sapindales" "Sapind
ales" ...
##  $ family                          : chr [1:2398] "Simaroubaceae" "Simaroubaceae" "Simaroubacea
e" "Simaroubaceae" ...
##  $ genus                           : chr [1:2398] "Ailanthus" "Ailanthus" "Ailanthus" "Ailanthu
s" ...
##  $ species                         : chr [1:2398] "Ailanthus altissima" "Ailanthus altissima" "A
ilanthus altissima" "Ailanthus altissima" ...
##  $ infraspecificEpithet            : logi [1:2398] NA NA NA NA NA NA ...
##  $ taxonRank                       : chr [1:2398] "SPECIES" "SPECIES" "SPECIES" "SPECIES" ...
##  $ scientificName                  : chr [1:2398] "Ailanthus altissima (Mill.) Swingle" "Ailanth
us altissima (Mill.) Swingle" "Ailanthus altissima (Mill.) Swingle" "Ailanthus altissima (Mill.) Sw
ingle" ...
##  $ verbatimScientificName          : chr [1:2398] "Ailanthus altissima" "Ailanthus altissima" "A
ilanthus altissima" "Ailanthus altissima" ...
##  $ verbatimScientificNameAuthorship: chr [1:2398] NA NA NA NA ...
##  $ countryCode                     : chr [1:2398] "US" "US" "US" "US" ...
##  $ locality                        : chr [1:2398] NA NA NA NA ...
##  $ stateProvince                   : chr [1:2398] "Massachusetts" "Massachusetts" "Massachusett
s" "Massachusetts" ...
##  $ occurrenceStatus                : chr [1:2398] "PRESENT" "PRESENT" "PRESENT" "PRESENT" ...
##  $ individualCount                 : num [1:2398] NA NA NA NA NA NA NA NA NA NA ...
##  $ publishingOrgKey                : chr [1:2398] "28eb1a3f-1c15-4a95-931a-4af90ecb574d" "28eb1a
3f-1c15-4a95-931a-4af90ecb574d" "28eb1a3f-1c15-4a95-931a-4af90ecb574d" "28eb1a3f-1c15-4a95-931a-4af
90ecb574d" ...
##  $ decimalLatitude                 : num [1:2398] 42.3 42.2 42.2 42.3 42.2 ...
##  $ decimalLongitude                : num [1:2398] -71.1 -71.7 -71.7 -71.8 -71.8 ...
##  $ coordinateUncertaintyInMeters   : num [1:2398] NA 357 357 14 NA 55 4 35 184 113 ...
##  $ coordinatePrecision             : logi [1:2398] NA NA NA NA NA NA ...
##  $ elevation                       : num [1:2398] NA NA NA NA NA NA NA NA NA NA ...
##  $ elevationAccuracy               : num [1:2398] NA NA NA NA NA NA NA NA NA NA ...
##  $ depth                           : logi [1:2398] NA NA NA NA NA NA ...
##  $ depthAccuracy                   : logi [1:2398] NA NA NA NA NA NA ...
##  $ eventDate                       : POSIXct[1:2398], format: "2013-09-20 08:04:43" "2025-05-07 
16:29:57" ...
##  $ day                             : num [1:2398] 20 7 7 13 12 11 30 30 9 8 ...
##  $ month                           : num [1:2398] 9 5 5 5 5 5 4 4 5 5 ...
##  $ year                            : num [1:2398] 2013 2025 2025 2025 2025 ...
##  $ taxonKey                        : num [1:2398] 3190653 3190653 3190653 3190653 3190653 ...
##  $ speciesKey                      : num [1:2398] 3190653 3190653 3190653 3190653 3190653 ...
##  $ basisOfRecord                   : chr [1:2398] "HUMAN_OBSERVATION" "HUMAN_OBSERVATION" "HUMAN
_OBSERVATION" "HUMAN_OBSERVATION" ...
##  $ institutionCode                 : chr [1:2398] "iNaturalist" "iNaturalist" "iNaturalist" "iNa
turalist" ...



##  $ collectionCode                  : chr [1:2398] "Observations" "Observations" "Observations" 
"Observations" ...
##  $ catalogNumber                   : chr [1:2398] "428320" "279310555" "279319023" "280843642" 
...
##  $ recordNumber                    : num [1:2398] NA NA NA NA NA NA NA NA NA NA ...
##  $ identifiedBy                    : chr [1:2398] "Jesse Lincoln" "BlueKirby" "BlueKirby" "apryz
512" ...
##  $ dateIdentified                  : POSIXct[1:2398], format: "2013-10-14 03:48:12" "2025-05-07 
20:30:39" ...
##  $ license                         : chr [1:2398] "CC_BY_NC_4_0" "CC_BY_NC_4_0" "CC_BY_NC_4_0" 
"CC_BY_NC_4_0" ...
##  $ rightsHolder                    : chr [1:2398] "Jesse Lincoln" "BlueKirby" "BlueKirby" "apryz
512" ...
##  $ recordedBy                      : chr [1:2398] "Jesse Lincoln" "BlueKirby" "BlueKirby" "apryz
512" ...
##  $ typeStatus                      : logi [1:2398] NA NA NA NA NA NA ...
##  $ establishmentMeans              : logi [1:2398] NA NA NA NA NA NA ...
##  $ lastInterpreted                 : POSIXct[1:2398], format: "2025-05-16 21:06:19" "2025-05-16 
19:30:19" ...
##  $ mediaType                       : chr [1:2398] "StillImage" "StillImage" "StillImage" "StillI
mage" ...
##  $ issue                           : chr [1:2398] "COORDINATE_ROUNDED;CONTINENT_DERIVED_FROM_COO
RDINATES;TAXON_MATCH_TAXON_ID_IGNORED" "COORDINATE_ROUNDED;CONTINENT_DERIVED_FROM_COORDINATES;TAXON
_MATCH_TAXON_ID_IGNORED" "COORDINATE_ROUNDED;CONTINENT_DERIVED_FROM_COORDINATES;TAXON_MATCH_TAXON_I
D_IGNORED" "COORDINATE_ROUNDED;CONTINENT_DERIVED_FROM_COORDINATES;TAXON_MATCH_TAXON_ID_IGNORED" ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   gbifID = col_double(),
##   ..   datasetKey = col_character(),
##   ..   occurrenceID = col_character(),
##   ..   kingdom = col_character(),
##   ..   phylum = col_character(),
##   ..   class = col_character(),
##   ..   order = col_character(),
##   ..   family = col_character(),
##   ..   genus = col_character(),
##   ..   species = col_character(),
##   ..   infraspecificEpithet = col_logical(),
##   ..   taxonRank = col_character(),
##   ..   scientificName = col_character(),
##   ..   verbatimScientificName = col_character(),
##   ..   verbatimScientificNameAuthorship = col_character(),
##   ..   countryCode = col_character(),
##   ..   locality = col_character(),
##   ..   stateProvince = col_character(),
##   ..   occurrenceStatus = col_character(),
##   ..   individualCount = col_double(),
##   ..   publishingOrgKey = col_character(),
##   ..   decimalLatitude = col_double(),
##   ..   decimalLongitude = col_double(),
##   ..   coordinateUncertaintyInMeters = col_double(),
##   ..   coordinatePrecision = col_logical(),
##   ..   elevation = col_double(),
##   ..   elevationAccuracy = col_double(),
##   ..   depth = col_logical(),
##   ..   depthAccuracy = col_logical(),
##   ..   eventDate = col_datetime(format = ""),
##   ..   day = col_double(),
##   ..   month = col_double(),



##   ..   year = col_double(),
##   ..   taxonKey = col_double(),
##   ..   speciesKey = col_double(),
##   ..   basisOfRecord = col_character(),
##   ..   institutionCode = col_character(),
##   ..   collectionCode = col_character(),
##   ..   catalogNumber = col_character(),
##   ..   recordNumber = col_double(),
##   ..   identifiedBy = col_character(),
##   ..   dateIdentified = col_datetime(format = ""),
##   ..   license = col_character(),
##   ..   rightsHolder = col_character(),
##   ..   recordedBy = col_character(),
##   ..   typeStatus = col_logical(),
##   ..   establishmentMeans = col_logical(),
##   ..   lastInterpreted = col_datetime(format = ""),
##   ..   mediaType = col_character(),
##   ..   issue = col_character()
##   .. )
##  - attr(*, "problems")=<externalptr>

To create an SDM, one is only required to use the latitude and longitude for these points. This is because the final product of an
SDM is a prediction surface, or raster (Phillips et al. 2006) – thus, the characteristics of each point, such as the date associated
with each observation on GBIF, are not considered important.

# Select only lon/lat columns
gbif_data_clean <- gbif_data[,c("decimalLongitude", "decimalLatitude")]

Raster download
Historical bioclimatic raster
Raster data from Worldclim has the benefit of being relatively more static. The Worldclim raster for historical bioclimatic
variables is perhaps not likely to change frequently because it is a product which has already been developed. However, there
are still methods to obtain the data without manually downloading the files. One major benefit of downloading historical
Worldclim data using the geodata  package (https://rdrr.io/cran/geodata/man/worldclim.html) is that one is able to specify a 30
degree tile instead of downloading data for the entire globe. This should lessen the amount of time needed to download the
files. Though data can be downloaded at a very high resolution of 30 seconds, this could be a prohibitively high cost in terms of
file storage on some hardware. Here, the res  argument is instead included as 2.5  minutes in order to lessen space
constraints and computational time. Note that the worldclim_tile  function only seemed to download the 30 second
resolution raster, so the global raster at the lower resolution of 2.5 minutes had to be downloaded instead using
worldclim_global .

library(geodata)

## Warning: package 'geodata' was built under R version 4.3.3

## Loading required package: terra

## Warning: package 'terra' was built under R version 4.3.3

## terra 1.8.10

https://rdrr.io/cran/geodata/man/worldclim.html


## 
## Attaching package: 'terra'

## The following object is masked from 'package:tidyr':
## 
##     extract

library(terra)

# Set resolution as local variable
res=2.5
#lon=-72
#lat=42

# Configure download of historical (i.e., 1970-2000) bioclimatic data
bc_rast_historical_25 <- worldclim_global(
                                     var="bio",
                                     res=res,
                                     path="data", 
                                     version="2.1"
                                     )

After viewing the below plot, it is clear that the above function successfully downloaded the bioclimatic raster data – all 19
bands. The raster stack can be cropped later.

# Test out to see if this downloaded correctly
terra::plot(bc_rast_historical_25)



Future bioclimatic rasters
There is a different function in the geodata  package which is used to download future climate data from Worldclim –
cimp6_world  (or cimp6_tile ). The documentation for the function (https://rdrr.io/github/rspatial/geodata/man/cmip6.html)

shows that arguments passed to the function are in line with the many different options available for manually downloading
future data on the Worldclim website. In addition to resolution, which was covered above, there is also a model  argument. This
corresponds to various GCMs, or global climate models, created by different organizations. The model GFDL-ESM4 will be used
in this script because it was created by NOAA. Next, there is an ssp  argument. This corresponds to a Shared Socio-economic
Pathway (SSP) which projects greenhouse gas emissions under different global scenarios (Meinshausen et al. 2020). The
available options are 126 , 245 , 370 , and 585 . The option 370  will be chosen because it is in the middle of the options and
is thus not the most optimistic nor pessimistic scenario for the future. Last, there is a time  argument which corresponds to the
future time period covered by the data. There are options for 2021-2040, 2041-2060, or 2061-2080. The first two options will be
chosen here to represent periods perhaps most relevant for short- and mid-term planning.

Testing differences in SDMs created from all combinations of these options would be intriguing, but it would require a large
amount of storage and computational time due to the large file sizes, especially if using the highest resolution available is
desired. It does not seem possible to restrict the future downloads to one country using the geodata  package. The
cimp6_tile  function is tested below, but it returns an error.

library(geodata)
# Set local variables
#lon=-72
#lat=42
model="GFDL-ESM4"
ssp="370"
time_1="2021-2040"
time_2="2041-2060"
res=2.5

# Download 2021-2040 data (tile)
bc_rast_2021_2040 <- cmip6_tile(lon=lon,
                                lat=lat,
                                model=model, 
                                ssp=ssp, 
                                time=time_1, 
                                var="bioc",
                                res=res,
                                path="data")

## Error in h(simpleError(msg, call)): error in evaluating the argument 'xy' in selecting a method 
for function 'cellFromXY': object 'lon' not found

# Download 2041-2060 data (tile)
bc_rast_2041_2060 <- cmip6_tile(lon=lon,
                                lat=lat,
                                model=model, 
                                ssp=ssp, 
                                time=time_2, 
                                var="bioc",
                                res=res,
                                path="data")

## Error in h(simpleError(msg, call)): error in evaluating the argument 'xy' in selecting a method 
for function 'cellFromXY': object 'lon' not found

https://rdrr.io/github/rspatial/geodata/man/cmip6.html
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As seen above, the cimp6_tile  function does not appear to work at the moment. Maintenance appears to be a reoccurring
issue (https://github.com/rspatial/geodata/issues/61). The global data will instead be downloaded.

# Set local variables
model="GFDL-ESM4"
ssp="370"
time_1="2021-2040"
time_2="2041-2060"
res=2.5

# Download 2021-2040 data (world)
bc_rast_2021_2040_world <- cmip6_world(
                                model=model, 
                                ssp=ssp, 
                                time=time_1, 
                                var="bioc",
                                res=res,
                                path="data"
                                )

# Download 2041-2060 data (world)
bc_rast_2041_2060_world <- cmip6_world(
                                model=model, 
                                ssp=ssp, 
                                time=time_2, 
                                var="bioc",
                                res=res,
                                path="data"
                                )

Data preprocessing
Raster masking and cropping
It is important that these three raster stacks are cropped to the study area before other steps are pursued to reduce
computational time.

Now, a study area shapefile or vector dataset is needed to mask/crop these raster stacks. The chosen study area is New
England. Attempting to use the arcgis  package to call down a layer from ArcGIS Online was promising but did not function
appropriately, perhaps due to the requirement (https://developers.arcgis.com/r-bridge/installation/) to have a license of ArcGIS
Pro with which to connect R and install the arcgisbinding  package. Said package has a function called arc.data2sf
(https://www.rdocumentation.org/packages/arcgisbinding/versions/1.0.1.229/topics/arc.data2sf) which may be necessary for a
feature layer from ArcGIS Online to be properly read as an sf  object. The normal workflow of downloading a shapefile and
reading it in with the sf  package can instead be pursued. The authoritative source used for this purpose was the U.S. Census
Bureau Cartographic Boundary Files (https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-
file.html) website.

library(sf)
library(tidyverse)
# Read in Census Divisions shapefile
census_divisions = st_read(here::here('data', 
                                  'cb_2018_us_division_500k', 
                                  'cb_2018_us_division_500k.shp'))

https://github.com/rspatial/geodata/issues/61
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## Reading layer `cb_2018_us_division_500k' from data source 
##   `/Users/a/Desktop/SDAR/Final2/data/cb_2018_us_division_500k/cb_2018_us_division_500k.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 9 features and 7 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: -179.1489 ymin: 18.91036 xmax: 179.7785 ymax: 71.36516
## Geodetic CRS:  NAD83

new_england <- census_divisions %>%
  filter(NAME == "New England")

Reprojection of the shapefile into the CRS of the SpatRaster  would be beneficial.

# Reproject the shapefile
new_england_proj <- st_transform(new_england, crs(bc_rast_historical_25))
new_england_proj

 
 

DIVISIONCE
<chr>

AFFGEOID
<chr>

GE…
<chr>

NAME
<chr>

LS…
<chr>

ALAND
<dbl>

AWATER
<dbl>

geometry
<s_MULTIP>

1 1 0300000US1 1 New England 69 162376417481 24072855206 <s_MULTIP>

1 row

# Mask, crop, and plot historical raster to test workflow
bc_historical_masked <- mask(bc_rast_historical_25, new_england_proj)

## |---------|---------|---------|---------|=========================================                
|---------|---------|---------|---------|=========================================                   

bc_historical_clip <- crop(bc_historical_masked, new_england_proj)
#plot(bc_historical_clip[[1]])

It seems as though the above workflow functions appropriately, so it will be repeated with the two future SpatRasters .

# Mask, crop, and plot future rasters

# 2021-2040
bc_2021_2040_masked <- mask(bc_rast_2021_2040_world, new_england_proj)

## |---------|---------|---------|---------|=========================================                
|---------|---------|---------|---------|=========================================                   

bc_2021_2040_clip <- crop(bc_2021_2040_masked, new_england_proj)

# 2041-2060
bc_2041_2060_masked <- mask(bc_rast_2041_2060_world, new_england_proj)

## |---------|---------|---------|---------|=========================================                
|---------|---------|---------|---------|=========================================                   



bc_2041_2060_clip <- crop(bc_2041_2060_masked, new_england_proj)

To run the next portion of the workflow, the ENMevaluate  function from the package ENMeval , it seems as though a
RasterStack  object is needed. This can be achieved by converting the terra  object known as a SpatRaster  to the
raster  object known as a RasterStack .

# Convert to RasterStack
bc_historical_stack <- raster::stack(bc_historical_clip)
bc_historical_stack

## class      : RasterStack 
## dimensions : 155, 162, 25110, 19  (nrow, ncol, ncell, nlayers)
## resolution : 0.04166667, 0.04166667  (x, y)
## extent     : -73.70833, -66.95833, 41, 47.45833  (xmin, xmax, ymin, ymax)
## crs        : +proj=longlat +datum=WGS84 +no_defs 
## names      : wc2.1_2.5m_bio_1, wc2.1_2.5m_bio_2, wc2.1_2.5m_bio_3, wc2.1_2.5m_bio_4, wc2.1_2.5m_
bio_5, wc2.1_2.5m_bio_6, wc2.1_2.5m_bio_7, wc2.1_2.5m_bio_8, wc2.1_2.5m_bio_9, wc2.1_2.5m_bio_10, w
c2.1_2.5m_bio_11, wc2.1_2.5m_bio_12, wc2.1_2.5m_bio_13, wc2.1_2.5m_bio_14, wc2.1_2.5m_bio_15, ... 
## min values :        0.8833334,        6.2666669,       23.5412788,      690.4295654,       20.52
00005,      -20.8959999,       25.5000000,       -5.8160000,      -11.7626667,        14.0019999,    
-12.9953337,       750.0000000,        89.0000000,        24.0000000,         5.3961720, ... 
## max values :        11.537500,        13.167333,        32.654411,      1170.551025,        29.9
59999,        -2.500000,        45.500000,        19.535999,        22.150000,         22.432610,    
1.833333,       1987.000000,        203.000000,        148.000000,         37.480797, ...

MaxEnt tuning
Now, the ENMevaluate  function can be run. The purpose of this function can be understood as part of the concept of machine
learning. For certain computer algorithms, users are intended to supervise performance in order to determine the best
combination of parameters for the model to predict on new data. An example is a random forest algorithm which is intended to
predict the presence or absence of a feature at various locations. The following function, ENMevaluate , tests parameter sets
for the maxnet  algorithm, which is the R implementation of MaxEnt . In theory, this saves a great amount of time which the
user might otherwise spend inputting different parameter combinations into the dismo::maxent  function itself. The feature
combination (FC) and regularization multipler (RM) which cause the model to perform best will be extracted from a dataframe
produced by the ENMevaluate  function.

Certain feature combinations are commented out due to warning and/or error messages produced when all, including just hinge
(H), were included. This may be due to clustering in the GBIF points which place many points in the same raster cells.

library(ENMeval)

## Loading required package: magrittr

## 
## Attaching package: 'magrittr'

## The following objects are masked from 'package:terra':
## 
##     extract, inset

## The following object is masked from 'package:purrr':
## 
##     set_names



## The following object is masked from 'package:tidyr':
## 
##     extract

## This is ENMeval version 2.0.4. 
## For worked examples, please consult the vignette: <https://jamiemkass.github.io/ENMeval/article
s/ENMeval-2.0-vignette.html>.

  enmeval_results_5deg = ENMevaluate(occ = gbif_data_clean,
                                    env = bc_historical_stack, 
                                    bg = NULL, 
                                    tune.args = list(fc = c("L",
                                                            "LQ",
                                                            #"H", 
                                                            "LQH" 
                                                            #"LQHP", 
                                                            #"LQHPT"
                                                            ), 
                                                 rm = 1:3), 
                                   partitions = "randomkfold", 
                                   partition.settings = list(kfolds = 5), 
                                   algorithm = "maxnet", 
                                   taxon.name = "Ailanthus altissima") 

## * Running ENMeval v2.0.4 with legacy arguments. These will be phased out in the next version.

## Package ecospat is not installed, so Continuous Boyce Index (CBI) cannot be calculated.

## *** Running initial checks for Ailanthus altissima ... ***

## * Randomly sampling 10000 background points ...

## * Removed 1827 occurrence localities that shared the same grid cell.

## * Clamping predictor variable rasters...

## * Model evaluations with random 5-fold cross validation...

## 
## *** Running ENMeval v2.0.4 for Ailanthus altissima with maxnet from maxnet package v0.1.4 ***



##   |                                                                              |                
|   0%  |                                                                              |========     
|  11%  |                                                                              |===========
=====                                                      |  22%  |                                 
|=======================                                               |  33%  |                     
|===============================                                       |  44%  |                     
|=======================================                               |  56%  |                     
|===============================================                       |  67%  |                     
|======================================================                |  78%  |                     
|==============================================================        |  89%  |                     
|======================================================================| 100%

## ENMevaluate completed in 11 minutes 29.2 seconds.

# Extract results dataframe
enmeval_df = enmeval_results_5deg@results

# View ordered by delta.AICc, which reveals model performance
enmeval_df %>%
  arrange(delta.AICc)

fc
<fct>

rm
<fct>

tune.args
<fct>

auc.train
<dbl>

cbi.train
<lgl>

auc.diff.avg
<dbl>

auc.diff.sd
<dbl>

auc.val.avg
<dbl>

auc.val.sd
<dbl>

LQH2 fc.LQH_rm.2 0.9440018 0.007916758 0.002869814 0.9420181 0.007240471

LQH1 fc.LQH_rm.1 0.9455713 0.008125629 0.003676965 0.9426353 0.007283833

LQH3 fc.LQH_rm.3 0.9423042 0.007935027 0.002746910 0.9407086 0.007354004

LQ 1 fc.LQ_rm.1 0.9388056 0.007803004 0.003986047 0.9381339 0.007530471

LQ 2 fc.LQ_rm.2 0.9378221 0.007296831 0.003721173 0.9372968 0.007073813

L 1 fc.L_rm.1 0.9374130 0.007297131 0.003970281 0.9369538 0.007165774

LQ 3 fc.LQ_rm.3 0.9374287 0.007252496 0.003658733 0.9369276 0.007121955

L 2 fc.L_rm.2 0.9372984 0.007240193 0.003914517 0.9368766 0.007111920

L 3 fc.L_rm.3 0.9371758 0.007252035 0.003735010 0.9367647 0.007032245

9 rows | 1-9 of 19 columns

It appears that the best model has the tuning arguments LQH (linear, quadratic, and hinge) and regularization multiplier 2. This
model has a training area under the ROC curve (AUC) value of 0.94 (in the first run of this function). The appropriate parameters
can be extracted from the data frame to prepare for running the dismo::maxent  function.

# Subset the ENMeval results to get the best model
enm_bestmodel <- subset(enmeval_df, delta.AICc == 0)
  
# Extract the FC and RM parameters
maxent_fc <- as.character(enm_bestmodel$fc)
maxent_rm <- as.character(enm_bestmodel$rm)

NA

NA

NA

NA

NA

NA

NA

NA

NA



MaxEnt
With the MaxEnt model tuned before the dismo::maxent  function has even been run, time has theoretically been saved in
tuning to find the appropriate combination of FC and RM values. Now, a combination of inputs will be used to train a MaxEnt
model for subsequent prediction on the historical data.

library(rJava)

## Warning: package 'rJava' was built under R version 4.3.3

# Run MaxEnt model using RasterStack, points, FC, and RM
maxent_model_toh <- dismo::maxent(bc_historical_stack, as.matrix(gbif_data_clean), 
                            features = maxent_fc, 
                            betamultiplier = maxent_rm)

Now, one can use the MaxEnt model to predict the probability of presence using the historical raster stack. This will produce a
raster.

# Predict tree-of-heaven distribution in New England
sdm_curr <- dismo::predict(maxent_model_toh, bc_historical_stack)

After Liu (2022) and Wimberly (2023), the same model will be used with the future raster stacks in order to predict on future
data. First, raster stacks must be created in line with how bc_historical_stack  was created above.

# Create raster stacks
bc_2021_2040_stack <- raster::stack(bc_2021_2040_clip)
bc_2041_2060_stack <- raster::stack(bc_2041_2060_clip)

Checking the names of the historical stack reveals the pattern wc2.1_2.5m_bio_n .

hist_names <- names(bc_historical_stack)
str(hist_names)

##  chr [1:19] "wc2.1_2.5m_bio_1" "wc2.1_2.5m_bio_2" "wc2.1_2.5m_bio_3" ...

However, in the future stacks, the names are wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_n . This will throw an error
when the MaxEnt function is run due to incompatibility of names.

names(bc_2021_2040_stack)



##  [1] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_1" 
##  [2] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_2" 
##  [3] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_3" 
##  [4] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_4" 
##  [5] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_5" 
##  [6] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_6" 
##  [7] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_7" 
##  [8] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_8" 
##  [9] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_9" 
## [10] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_10"
## [11] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_11"
## [12] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_12"
## [13] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_13"
## [14] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_14"
## [15] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_15"
## [16] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_16"
## [17] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_17"
## [18] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_18"
## [19] "wc2.1_2.5m_bioc_GFDL.ESM4_ssp370_2021.2040_19"

Since the historical names entered the environment as a vector, they can be used to replace the names of the 19 bands of the
future rasters.

# Change names of future rasters; https://gis.stackexchange.com/questions/452710/writeraster-how-to
-mantain-layer-names-when-writing-raster-data-to-a-file
names(bc_2021_2040_stack) <- hist_names
names(bc_2021_2040_stack)

##  [1] "wc2.1_2.5m_bio_1"  "wc2.1_2.5m_bio_2"  "wc2.1_2.5m_bio_3" 
##  [4] "wc2.1_2.5m_bio_4"  "wc2.1_2.5m_bio_5"  "wc2.1_2.5m_bio_6" 
##  [7] "wc2.1_2.5m_bio_7"  "wc2.1_2.5m_bio_8"  "wc2.1_2.5m_bio_9" 
## [10] "wc2.1_2.5m_bio_10" "wc2.1_2.5m_bio_11" "wc2.1_2.5m_bio_12"
## [13] "wc2.1_2.5m_bio_13" "wc2.1_2.5m_bio_14" "wc2.1_2.5m_bio_15"
## [16] "wc2.1_2.5m_bio_16" "wc2.1_2.5m_bio_17" "wc2.1_2.5m_bio_18"
## [19] "wc2.1_2.5m_bio_19"

names(bc_2041_2060_stack) <- hist_names
names(bc_2041_2060_stack)

##  [1] "wc2.1_2.5m_bio_1"  "wc2.1_2.5m_bio_2"  "wc2.1_2.5m_bio_3" 
##  [4] "wc2.1_2.5m_bio_4"  "wc2.1_2.5m_bio_5"  "wc2.1_2.5m_bio_6" 
##  [7] "wc2.1_2.5m_bio_7"  "wc2.1_2.5m_bio_8"  "wc2.1_2.5m_bio_9" 
## [10] "wc2.1_2.5m_bio_10" "wc2.1_2.5m_bio_11" "wc2.1_2.5m_bio_12"
## [13] "wc2.1_2.5m_bio_13" "wc2.1_2.5m_bio_14" "wc2.1_2.5m_bio_15"
## [16] "wc2.1_2.5m_bio_16" "wc2.1_2.5m_bio_17" "wc2.1_2.5m_bio_18"
## [19] "wc2.1_2.5m_bio_19"

Now, MaxEnt can be applied to the future rasters.

# Predict tree-of-heaven distribution in New England for the period 2021-2040
sdm_future_1 <- dismo::predict(maxent_model_toh, bc_2021_2040_stack)

# Predict tree-of-heaven distribution in New England for the period 2041-2060
sdm_future_2 <- dismo::predict(maxent_model_toh, bc_2041_2060_stack)



Results
The SDM rasters can be plotted to reveal the differences between them.

library(raster)

## Warning: package 'raster' was built under R version 4.3.3

## Loading required package: sp

## Warning: package 'sp' was built under R version 4.3.3

## 
## Attaching package: 'raster'

## The following object is masked from 'package:dplyr':
## 
##     select

# Convert raster to a dataframe
sdm_curr_df <- as.data.frame(rasterToPoints(sdm_curr), stringsAsFactors = FALSE)
# Basic plot
  ggplot() +
    geom_tile(data = sdm_curr_df, aes(x = x, y = y, fill = layer)) +
    coord_fixed(ratio = 1) +  # Preserve aspect ratio
    labs(fill = "Value", x = "Longitude", y = "Latitude") +
    scale_fill_viridis_c(name="Probability of Presence\n (1970-2000)")



Figure 1. Historical species distribution model (SDM) for the species Ailanthus altissima (tree-of-heaven) in New England. SDM
created using MaxEnt using Worldclim historical climate data (1970-2000) for 19 bioclimatic variables.

# Convert raster to a dataframe
sdm_fut1_df <- as.data.frame(rasterToPoints(sdm_future_1), stringsAsFactors = FALSE)
# Basic plot
  ggplot() +
    geom_tile(data = sdm_fut1_df, aes(x = x, y = y, fill = layer)) +
    coord_fixed(ratio = 1) +  # Preserve aspect ratio
    labs(fill = "Value", x = "Longitude", y = "Latitude") +
    scale_fill_viridis_c(name="Probability of Presence\n (2021-2040)")

Figure 2. Future species distribution model (SDM) for the species Ailanthus altissima (tree-of-heaven) in New England in the
period 2021-2040. SDM created using MaxEnt using Worldclim future climate data (GCM = GFDL-ESM4; SSP = 370) for 19
bioclimatic variables.

# Convert raster to a dataframe
sdm_fut2_df <- as.data.frame(rasterToPoints(sdm_future_2), stringsAsFactors = FALSE)
# Basic plot
  ggplot() +
    geom_tile(data = sdm_fut2_df, aes(x = x, y = y, fill = layer)) +
    coord_fixed(ratio = 1) +  # Preserve aspect ratio
    labs(fill = "Value", x = "Longitude", y = "Latitude") +
    scale_fill_viridis_c(name="Probability of Presence\n (2041-2060)")



Figure 3. Future species distribution model (SDM) for the species Ailanthus altissima (tree-of-heaven) in New England in the
period 2041-2060. SDM created using MaxEnt using Worldclim future climate data (GCM = GFDL-ESM4; SSP = 370) for 19
bioclimatic variables.

The legend titles for the plots were assigned based on Liu (2022).

Using historical climate data, tree-of-heaven is predicted to be found in: eastern Massachusetts, including the Islands;
southwestern Connecticut; and Rhode Island. This comprises southern New England. There is a very low predicted probability
of presence in northern New England, including almost a 0% predicted probability of presence across all of Maine (Figure 1).

In the nearest future period, 2021-2040, the predicted range of the species changes. In fact, there is somewhat of a northward
shift. The model is notably near-certain that tree-of-heaven could be found in western Vermont, particularly near Lake
Champlain, and presence is deemed likely (e.g., approximately 75%) in much of eastern New Hampshire and southern Maine.
Elsewhere in northern New England, high presence probability appears to follow the Connectcut River, which lies near the
border of New Hampshire and Vermont. There are also pockets of middling probability of presence in inland central Maine. In
the south, however, there is less confidence in the presence of the species on the South Shore of Massachusetts and
southwestern Connecticut (Figure 2).

The prediction surface for the latest future period included in this project, 2041-2060, shows a further northward shift in
predicted presence probability. The areas with middling probability of presence (approximately 50-75%) in inland Maine have
expanded, and areas with similar values are found in veins in central and western Vermont and central New Hampshire.
Meanwhile, the species is no longer predicted to be present in the southernmost area of the raster, corresponding to southern
Connecticut, southern Massachusetts, and most of Rhode Island (Figure 3).

Discussion
Historical range
The raster showing predicted historical distribution (Figure 1), which is based on historical data, is theoretically distinct from the
GBIF point data because it displays the predicted distribution of the species rather than the observed locations. This may not
have the exact same extent as the presence points due to the concept that the species is not found in every place it may be



predicted to be found. Indeed, when comparing Figure 1 to Figure 4, displayed below, it is apparent that there are some slight
differences. For example, the species appears to be predicted to be present with a probability of 50% or greater in eastern
Connecticut, where there have not been many observations of the species to date (Figure 1, Figure 4). This may mean that other
factors besides the 19 bioclimatic variables, such as land use (Liu 2022), may have some influence in predicting the species
distribution.

ggplot() +
  geom_sf(data = new_england) +
  geom_point(data = gbif_data_clean, aes(x=decimalLongitude, y=decimalLatitude), size=0.5, alpha=0.
5) +
  labs(x="Longitude", y="Latitude")

Figure 4. Distribution of GBIF presence points in New England. Download occurred on May 21, 2025.

Historical vs. future range
As noted in the results section, there are large observable differences in the three prediction surfaces (Figure 1-3). Together,
these differences suggest that the values of the bioclimatic rasters in the future periods are meaningfully different than those in
the historical (1970-2000) raster stack. The model predicts based on the extracted raster values from the cells in which points lie
(Phillips et al. 2006). It is thus possible that the bioclimatic raster values in southern New England change such that the model
loses confidence in the predicted presence and that the raster values in northern New England change such that they are similar
to the values in the cells in which points lie in Figure 1. The latter condition is perhaps simpler to comprehend as a function of a
projected increase in annual temperature. In climate simulations reported by Tang et al. (2012), temperature increased in New
England, causing deciduous forests to shift northward. Janowiak et al. (2018) also report that climate models suggest significant
increases in temperature by 2100 across New England. In the list of layer names (https://www.worldclim.org/data/bioclim.html)
for Worldclim bioclimatic data, there are many which relate to temperature; it is split into two between those variables related to
temperature and those related to precipitation. One can start by investigating changes in variable 1, annual mean temperature.

https://www.worldclim.org/data/bioclim.html
https://www.worldclim.org/data/bioclim.html


# Subtract latest raster from historical raster
minus_bio_1 <- bc_2041_2060_stack[[1]] - bc_historical_stack[[1]]

# Convert raster to a dataframe
minus_bio_1_df <- as.data.frame(rasterToPoints(minus_bio_1), stringsAsFactors = FALSE)

# Plot difference raster
ggplot() +
  geom_tile(data = minus_bio_1_df, aes(x = x, y = y, fill = layer)) +
    coord_fixed(ratio = 1) +  # Preserve aspect ratio
    labs(fill = "Value", x = "Longitude", y = "Latitude") +
    scale_fill_viridis_c(name="BIO 1: Annual Mean Temperature \n(°C): 2041-2060 - 1970-2000")

Figure 5: Difference raster created by subtracting band 1 of the historical raster stack (1970-2000 data) from band 1 of the
future raster stack for 2041-2060. This shows Worldclim bioclimatic variable 1, or annual mean temperature.

As can be seen in Figure 5, annual mean temperature increases most in northwestern Vermont, which could be a reason for the
high predicted presence probability in this region in Figures 2-3. It also increases least in the southern CT, MA, and RI, which
may be relevant to the lower presence probability predicted for this area in Figures 2-3.

The variable of annual precipitation (BIO 12) can be tested as a second variable to compare with BIO 1.



# Subtract latest raster from historical raster
minus_bio_12 <- bc_2041_2060_stack[[12]] - bc_historical_stack[[12]]

# Convert raster to a dataframe
minus_bio_12_df <- as.data.frame(rasterToPoints(minus_bio_12), stringsAsFactors = FALSE)

# Plot difference raster
ggplot() +
  geom_tile(data = minus_bio_12_df, aes(x = x, y = y, fill = layer)) +
    coord_fixed(ratio = 1) +  # Preserve aspect ratio
    labs(fill = "Value", x = "Longitude", y = "Latitude") +
    scale_fill_viridis_c(name="BIO 12: Annual Precipitation \n(mm): 2041-2060 - 1970-2000")

Figure 6: Difference raster created by subtracting band 12 of the historical raster stack (1970-2000 data) from band 12 of the
future raster stack for 2041-2060. This shows Worldclim bioclimatic variable 12, or annual precipitation.

Projected increases in annual precipitation (BIO 12) appear highest in southwestern Connecticut and lowest in northwestern
Vermont (Figure 6). This observation is notable in the context of Figure 2-3, which show an increased presence probability and
decreased presence probability, respectively, for these same regions compared to Figure 1. The annual precipitation values
increasing in southern New England could be one factor of why tree-of-heaven is not predicted to be found there by the MaxEnt
model in future periods, especially 2041-2060 (Figure 3).

It would be beneficial in a future project to form difference rasters for all 19 bioclimatic variables. Figures 2-3 also do suggest
that another variables, such as elevation, may be important to include due to the indication of higher presence in the Champlain
Valley (close to Lake Champlain) and the banks of the Connecticut River. Elevation is used in many SDMs (Hof et al. 2012), so its
introduction to a future project would not be out of the question. For now, it is able to be surmised that the climatic conditions of
southern New England, based on 19 variables which are designed to be relevant to species distributions, may become
insufficient for tree-of-heaven in the coming 40 years; however, the opposite becomes true for much of northern New England
(Figures 2-3). Extracting variable importance, as is possible for random forest, would be helpful in determining exactly which
bioclimatic variables exert the most influence over the model and thus have the most predictive power.



Potential importance
Invasive plant species watch lists, a topic discussed by Reaser et al. (2020b) and Jarnevich et al. (2023), may benefit from the
results in that land which is potentially historically suitable for tree-of-heaven is identified by Figure 1. For example, an
organization with land in eastern Connecticut which has not seen tree-of-heaven on its property may be interested in the
suggestion that its land is still suitable for the species to be found according to a statistical model.

Additionally, land managers may be interested in incorporating predictions into short- or mid-term planning for invasive species
management as part of existing efforts to set out plans for how their organization may approach land management in future
decades. Land managers near Burlington, VT, along the Connecticut River, and across central Maine may benefit from noting
down that the species could potentially be found in their land, given sufficient dispersal, in the coming decades. As of writing
this document, the first future period has begun, and its end is just 15 years away. Due to this, it could be important that land
managers in these areas learn more about the ecology of tree-of-heaven and how scientists have opted to remove it in the past,
which could include biological control measures (Harris et al. 2013).

Future work
This project is well-suited to expansion. In addition to the extensions discussed in the last part of the “current vs. future range”
section, it could be continued in various ways: for one, it is perhaps conspicuous that the highest-resolution version of the
Worldclim data (30 seconds) was not used to account for space constraints, computational time, and the apparent failure of the
cimp6_tile  function, which would allow for the download of data which has already been cropped compared to a global

extent. One may have higher confidence in a model which takes advantage of said resolution, especially due to the
ENMevaluate  warning message referring to many of the points being in the same grid cell; this issue may be solved by having

a smaller resolution, for which there is only 0.5 minutes (30 seconds). Even if the 30 arcsecond resolution is infeasible to use in a
future project, comparison of models built upon the two other resolutions (10 and 5 minutes) is still a potentially valuable avenue
for model validation (Özdemir 2024).

Additionally, different models which are used for SDMs, such as random forest (e.g., Evans et al. 2010) could be compared with
the MaxEnt results to account for the idea that MaxEnt is only one possible way to model the presence of species. Comparison
between MaxEnt and random forest is suggested as appropriate under certain circumstances in a tutorial article by Esri, the
creator of the popular ArcGIS family of software (Nieto and Liu 2022). ArcGIS Pro itself does have an implementation of MaxEnt
(Liu 2022), and it is also perhaps worth comparing rasters created in R and ArcGIS using identical parameters in order to
investigate whether computational environment affects the prediction surfaces.

Last, it would be beneficial to examine whether a similar range expansion is predicted by MaxEnt to occur for other species
which are invasive in Massachusetts. Such a project would serve to augment hypothetical watch lists (after Jarnevich et
al. 2023) for northern land managers who may not have had to consider the threat of more southern species. An approach
testing all 36 invasive species in Massachusetts under similar test conditions, while time-consuming (high values of k-fold
validation for ENMevaluate  can take upwards of 30 minutes) and computationally intensive, would be an intriguing
comparison. Methods already implemented to some degree in this script, such as using rgbif  to remotely download GBIF
data, may save a small amount of time on manual menu navigation, however. Tree-of-heaven serves as a surrogate to explain to
a land manager the threat of climate change exacerbating the problem of invasive species, but this message can be enhanced
by increasing the sample size of species who have the potential to move northward.
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